
Fourier Analysis 

 In our Mathematics classes, we have been taught that complicated functions can often be 
represented as a long series of terms whose sum closely approximates the actual function.  
Taylor series is one very powerful application of this idea. In the case of Taylor series, the 
function is approximated by a constant value of the function at a particular point added to 
successive derivatives evaluated at that same point and multiplied by specific constants or 
coefficients.  Another type of series is the Fourier series.  Here specific constants are multiplied 
by sine and cosine terms to generate the series that approximates the function. 
 
 As an example, consider the following series of five terms that represent the oscillating 
pressure sensed by a hypothetical detector as a sound passes by: 
 

( ) 51 1 1 1 1f t  + cos[5 t] + cos[10 t] +  sin[5 t] + sin[10 t] x10 Pa
2 3 4 3 4

⎧ ⎫= ⎨ ⎬
⎩ ⎭

 

 
Notice some things about this series.  The first term is a constant, sometimes called the “DC” 
term using an analogy to electrical voltages and currents.  The second and third are cosine terms.  
The angular frequency of the second term is 5 rad/sec and the amplitude is 1/3 .  The 
third term has twice the angular frequency so it oscillates twice as fast, but has and amplitude of 
only 1/4 .  The fourth and fifth terms have the same frequency and amplitude as the 
second and third but are shifted in phase by 90 degrees relative to the cosines.  When plotted for 
5 sec, this series looks like this:   
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Most often in experimental acoustics, we have a detector to receive a signal like this one and it is 
our purpose to work backwards and determine the frequencies and the amplitudes of the tones 
(terms in the series) that make up the periodic signal.  The method of finding these tones is called 
“Fourier Analysis.”  Finding the frequencies is simply a matter of determining the overall period 
of the repeating signal.  The fundamental frequency, or frequency of the first sine or cosine term 
in the series (in Hertz), is simply the reciprocal of that frequency.  Higher frequency terms are 
just multiples or harmonics of the fundamental frequency.  Generally the frequency is given in 
rad/sec instead of Hz. 
 
Finding the coefficients or amplitude of each term occurs using a very clever bit of mathematics 
discovered by Fourier.  This method is sometimes called “Fourier’s Hammer” because it is used 
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to hammer out each of the coefficients (amplitudes) in the series.  We’ll study this method in 
some detail below.     
 

In fact, many sounds are combinations of discrete frequency components that we hear as 
one sound.  In class, we will use spectrum analyzers and digital oscilloscopes which use digital 
signal processing algorithms to find the magnitude (proportional to the Fourier Series 
Coefficient) and frequency of each component of a signal.   

Calculating Coefficients 

Starting with a periodic function (such as a sound wave), we can breakdown this 
function into separate frequency components by using Fourier Analysis.  Note that we must 
KNOW the period of the wave and BE ABLE TO DEFINE the function, f(t), over that period to 
be able to use Fourier Analysis.  Often the function will be zero, a constant, or a straight line 
with constant slope.  Whatever it is, we must be able to write a math expression (or a good 
approximation) for the function over the entire period.   

 
First let us be very specific about the frequency in rad/sec.  Once we have identified the 

period over witch the function repeats, the angular frequency is:  
2
T
π

ω =  

In the example plot of the periodic function above, the period is approximately 1.25 sec by 
inspection of the time scale.  This is consistent with the equation we plotted since  
 

2 2 rad 5rad / sec.
T 1.25sec
π π

ω = = ≈  

 
Other terms in the Fourier series will have frequencies that are multiples of 5 rad/sec, e.g. 10 
rad/sec, 15 rad/sec, 20 rad/sec,…..  

 
Calculating the amplitudes is somewhat more complicated.  First consider the equation 

we plotted above (where I have dropped the units and constant 105): 
 

( ) 1 1 1 1 1f t  + cos[5 t] + cos[10 t] +  sin[5 t] + sin[10 t]
2 3 4 3 4

=  

 
Even though we know the amplitude of the first cosine term is 1/3, let’s try to develop a method 
to unmask it.  First, multiply each term by cos(5t). 
 

( ) ( ) ( ) ( ) ( )

( ) ( )

1 1 1f t cos 5t cos 5t  + cos[5 t]cos 5t  + cos[10 t]cos 5t  
2 3 4

1 1                       +  sin[5 t]cos 5t  +  sin[10 t]cos 5t
3 4

=
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Next, we find the time average of each term in the series using the normal definition for the time 
average of a function.  This is a reasonable approach because we are looking for a representative 
value for the amplitude averaged over at least one cycle, not an instantaneous value. 

( ) ( )
T

0

1f t f t dt
T

= ∫  

The result looks complicated and long but will quickly simplify. 

( ) ( ) ( ) ( ) ( )

( ) ( )

T T T T

0 0 0 0
T T

0 0

1 1 1 1 1 1 1f t cos 5t dt cos 5t dt + cos[5 t]cos 5t dt +  cos[10 t]cos 5t dt 
T T 2 T 3 T 4

1 1 1 1                                         +   sin[5 t]cos 5t dt +  sin[10 t]cos 5t dt
T 3 T 4

=∫ ∫ ∫ ∫

∫ ∫
 

A quick inspection of the left side of the equal sign reveals that most of the terms integrate to 
zero.  In fact all but one term are zero since, 

T T T

0 0 0

sin n t cos m tdt sin n t sin m tdt cos n t cos m tdt 0ω ω = ω ω = ω ω =∫ ∫ ∫  

unless m=n.  In that case, (sine would be identical) 
T T

2

0 0

1 1cos n t cos m tdt cos n tdt
T T

1
2

ω ω = ω =∫ ∫  

This leaves us with the following: 

( ) ( )
T T

0 0

c 21 1 1 1 1f t cos 5t dt 0+ os [5 t]dt+0+0+0
T T 3 3 2

⎛ ⎞
⎜ ⎟
⎝ ⎠∫ ∫= =  

Rearranging slightly shows that the coefficient we were trying to find, i.e. the 1/3, must be 
calculated as follows: 

( ) ( )
T

1
0

1 2 f t cos 5t dt a
3 T
= =∫  

The name we will give to this coefficient is a1.  We arbitrarily decide to call all the coefficients 
for cosine terms “a” and for sine terms “b.”  The subscript tells us which harmonic of the 
fundamental frequency the coefficient is associated with.  In this case, n=1 is the fundamental 
term.   
 

Hopefully you see that this approach can be used to find any coefficient (any value of an 

or bn).  All we have to do is multiply the series by either cosnωt or sinnωt and time average the 
result.  Since most of the terms average to zero, the result can be summarized in the following set 
of rules.  In truth, finding Fourier coefficients can be a very mechanical procedure that you can 
perform simply by learning these rules. 

 
Let us start with any time varying signal, f(t).  If f(t) is periodic over the interval 0≤t≤T, it 

can be broken down into a series of frequency components (coefficients) where: 
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( ) ( )

( ) ( )

T

n
0
T

n
0

2   
T

the coefficients are calculated by:

2a f t cos n t dt  for n 0,  1, 2, 3, ....
T

2b f t sin n t dt  for n 1, 2, 3, ....
T

π
ω =

= ω =

= ω =

∫

∫

 

Note that n goes from 0 to ∞ for an but n goes from 1 to ∞ for bn.  That is because there is no b0 
term. The sin of (nωt) where n=0 is always 0, thus b0 is always 0. 
 

The coefficents a0, a1, a2, …, and b1, b2, b3, … are the Fourier coefficients of the function, 
f(t).  Now the original function f(t), can be described as the summation of many different sine 
and cosine functions.   

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 1 2 3

1 2 3

0
n n

n 1

1f t a a cos t a cos 2 t a cos 3 t
2

        b sin t b sin 2 t b sin 3 t
or,

af t a cos n t b sin n t   
2

∞

=

= + ω + ω + ω + ⋅⋅⋅

+ ω + ω + ω + ⋅⋅⋅

= + ω + ω⎡ ⎤⎣ ⎦∑

 

Example 

Given the periodic function :  ( )
0  when 0 t

f t
1  when t 2

< < π⎧
= ⎨ π < < π⎩

 

which repeats every 2π seconds.  A sketch of the function would look like: 
 

 1 

f(t) 

(sec) t 

-2π 2ππ

The function can be expanded into a series of sine and cosine terms that when added together, 
replicate the original function.  It is our job to find the coefficients of those terms.     
 

7-4 



First we must identify the period of the repeating function.  Hopefully it is obvious that T = 2π 
seconds.  From this we find the angular frequency, ω. 

2 2 rad 1 rad / sec.
T 2 sec
π π

ω = = =
π

 

This is a convenient result since the angular frequency of harmonic terms is just nω = n rad/sec. 
 
The coefficients are then found as follows.  Notice that we break the integral up into 2 pieces 
where the function has two different constant values, zero and one. 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

2 2

n
0 0

2
2

n

n

2 1 1a f t cos nt dt 0 cos nt dt 1 cos nt dt
T

1 1a cos nt dt sin nx
n

1a sin n 2 sin n 0
n

π π π

π

π
π

π
π

= = ∗ + ∗
π π

= =
π π

= ∗ π − ∗π =⎡ ⎤⎣ ⎦π

∫ ∫ ∫

∫  

and 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( )( )

2 2

n
0 0

2
2

n

n

n n

n

2 1 1b f t sin nt dt 0 sin nt dt 1sin nt dt
T

1 1b sin nt dt cos nx
n

1b cos n 2 cos n
n
1b 1 cos n   for n  odd numbers  otherwise b 0

n
2b   for n  odd numbers

n

π π π

π

π
π

π
π

= = ∗ +
π π

= = −
π π

= − ∗ π − ∗π⎡ ⎤⎣ ⎦π

= − − π = =
π

= − =
π

∫ ∫ ∫

∫

and 

( ) ( )
2 2

0
0 0

2

0

2 1a f t cos 0* t dt 0*dt 1*dt
T

1a dt 1

π π

π

π

π

= =
π π

= =
π

∫ ∫

∫

1 π

+ ∫
 

thus, the original function can be expanded to: 
 

( ) ( ) ( ) ( ) ( ) ( )0
n n

n 1

sin 1t sin 3t sin 5ta 1 2f t a cos n t b sin n t ...
2 2 1 3

∞

= 5
⎡ ⎤

= + ω + ω = − + + +⎡ ⎤ ⎢ ⎥⎣ ⎦ π ⎣ ⎦
∑  
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 If we added up all the terms of the Fourier Expansion, a graphical representation would 
look like this: 

Fourier Analysis
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 The important thing to note is that the original square wave function can be composed 
from adding components of multiple sine and cosine functions with frequencies that are 
multiples of the base frequency.  The base frequency of the components is the same as the base 
frequency of the square wave.   

Odd or Even Functions 
 
By looking at the form of the input signal, f(t), we can come up with some shortcut rules 

for deriving the coefficients.  If we can determine if the f(t) is an odd or even function, we can 
determine whether the a or b coefficients are equal to zero as in the last example.  A function is 
odd or even based on the following: 

 
( ) ( )
( ) (tft-f    :Function Odd

tft-f  :FunctionEven 
−= )

=
 

 
Even functions are thus functions that are symmetric about the y-axis.  Odd functions are 

functions that are symmetric about the x-axis AND are mirror images of each other (symmetric 
about the origin).  Many functions are neither odd nor even, but understanding this characteristic 
function type lets us anticipate which Fourier coefficients might be zero.  
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Some samples of even and odd functions. 

 
An odd function  f(t) = sin (ωt) 

 
 
 
 
 
 
 
 
 
 

An even function  f(t) = cos(ωt) 
 
 
 
 
 
 
 
 
 
 
 
 
 

An odd function  f(t) = t 
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An even function  f(t) = t2

 
 
 
 
 
 
 
 
 
 
 
 
 
Since cosines are even, other even functions are made up only of cosines.  On the other hand, 
odd functions are made up only of sines.  Thus the coefficients for the different type functions 
are: 

( ) ( ) ( )

n
T

n
0

a 0
If f x  is odd then  2b f t sin n t dt  for n 1, 2, 3, ....

T

=⎧
⎪
⎨ = ω =⎪
⎩

∫
 

( ) ( ) ( )
T

n
0

n

2a f t cos n t dt  for n 0,  1, 2, 3, ....
If f t  is even then T

b 0

⎧
= ω =⎪

⎨
⎪ =⎩

∫  

Remember, some functions are neither even or odd in which case you must simply calculate all 
the Fourier coefficients and see what results are obtained. 
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Problems 
 

1. Given the following pressure function, p(t), which can be described as a square wave of 1 Pa 
for T/3 sec, and 0 Pa for 2T/3 sec shown below where T = 1 sec : 

t ( s )

1 P a

2 T5 T / 34 T / 3TT / 3 2 T / 3

P ( t )

 

p t
Pa t T

Pa T t T
( )

,

,
=

< <

< <

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

1 0
3

0
3

 

a) Is this function odd, even, both, or neither?  How do you know? 

b) What is the base or fundamental frequency of the square wave? 

c) Perform the integrations to calculate the coefficient, “ao”. 

d) Perform the integrations to calculate the coefficient, “an” coefficients. 

e) Perform the integrations to determine the “bn” coefficients. 
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f) Fill out the following table for 0 9≤ ≤n : 

n an    (Pa) bn   (Pa) Tn    = T / n 

(sec) 

fn    = 1 / Tn 

(Hz) 

0  N/A N/A N/A 

1     

2     

3     

4     

5     

6     

7     

8     

9     

 
g) What is the pattern here?  List the frequencies of the first nine non-zero harmonics of the 

fundamental that go make up the first nine terms of the Fourier Expansion. 
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Fourier Series – Periodic Functions

( )

( ) ( )

( ) ( ) .... 3, 2, 1,nfor   sin2b

.... 3, 2, 1, ,0nfor   cos2

:by calculated are tscoefficien   the2
: wheretffunction  afor 

0
n

0

==

==

=

∫

∫
T

T

n

dttntf
T

dttntf
T

a

T

ω

ω

πω

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

0
n n

n 1

0 1 2

1 2

af t a cos n t b sin n t   or,
2
1f t a a cos t a cos 2 t
2

        b sin t b sin 2 t

∞

=

= + ω + ω⎡ ⎤⎣ ⎦

= + ω + ω + ⋅⋅⋅

+ ω + ω + ⋅⋅⋅

∑
Example
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Coefficients
( ) ( ) ( ) ( )

( ) ( )

( ) ( )[ ] 0sin2sin1

sin1cos1

cos01cos11cos1

2
2

2

0

2

0

=∗−∗=

==

∗+==

∫

∫ ∫∫

ππ
π

ππ

πππ
π

π

π
π

π

π

ππ

nn
n

a

nx
n

dtnta
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n

n

n

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( )( )

2 2

n
0 0

2
2

n

n

n n

n

1 1 1b f t sin nt dt 1sin nt dt 0 sin nt dt

1 1b sin nt dt cos nx
n

1b cos n 2 cos n
n
1b 1 cos n   for n  odd numbers  otherwise b 0
n
2b   for n  odd numbers

n

π π π

π

π
π

π
π

= = + ∗
π π π

= = −
π π

= − ∗ π − ∗π⎡ ⎤⎣ ⎦π

= − − π = =
π

= − =
π

∫ ∫ ∫

∫

Example

( )
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⎨
⎧
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Fourier Transform of a Square Wave
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Odd and Even Functions
( ) ( )
( ) ( )tft-f    :Function Odd

tft-f  :FunctionEven 
−=

=

Even Odd
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Odd and Even Functions
( ) ( )
( ) ( )tft-f    :Function Odd

tft-f  :FunctionEven 
−=

=

Even Odd

( )
( ) ( )

n
T

n
0

a 0                                                             If f t  is odd then  
2b f t sin n t dt  for n 1, 2, 3, ....
T

⎧
⎪

=⎪
⎨
⎪ = ω =
⎪⎩

∫

( )
( ) ( )

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

=ω= ∫
                                                         0b

.... 3, 2, 1, 0nfor   dttntf
T
2a

even then  is tf If
n

T

0
n ,cos
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